Liquid drops always splash when they impact smooth surfaces with high enough speeds. This common phenomenon is crucial in many important fields such as agriculture, printing, surface coating, and spray cooling. However, despite extensive studies over one century, the origin of splashing remains a big mystery. Combining experiment with model, we show that the air trapped under the liquid drop forms a special flow within a nanoscale gap. This airflow produces a stress 10 times stronger than common wind and generates instabilities similar to water ripples that trigger splash. Our model agrees quantitatively with the experimental verifications and brings a fundamental understanding to the general phenomenon of drop splashing on smooth surfaces.
Seminar Series of the NYU-ECNU Institute of Physics at NYU Shanghai
To our visitors
- RSVP may be required for this event. Please check event details
- Visitors will need to present a photo ID at the entrance
- There is no public parking on campus
- Entrance only through the South Lobby (1555 Century Avenue)
- Taxi card
- Metro: Century Avenue Station, Metro Lines 2/4/6/9 Exit 6 in location B
- Bus: Century Avenue at Pudian Road, Bus Lines 169/987