A random polynomial H of degree p on the sphere in dimension N: when the coefficients are i.i.d. Gaussian, this is the spherical p-spin glass. This Hamiltonian H has exponentially many in N critical points of every index; moreover, its Langevin dynamics at low temperature are known to take exponentially long in N to equilibrate and are believed to exhibit aging on shorter timescales.

We prove an approximate phase diagram for $(H(X_t), |\nabla H(X_t)|^2)$ on order-one time scales. We will discuss consequences of this phase diagram, e.g., uniformly over all starting states, Langevin dynamics at any temperature reaches and remains in a region of macroscopically negative energies, and is repelled by macroscopic neighborhoods of critical points.

This is a Joint work with G. Ben Arous and A. Jagannath.

Reza Gheissari is a 4th year Ph.D. student at NYU Courant co-advised by Charles Newman and Eyal Lubetzky. His research interests are in probability theory and mathematical physics, including dynamics of spin systems, their phase transitions and mixing times.