Publications

201.

Y. Liu. Controllability of Harmonic Map Heat Flow with an External FieldarXiv preprint arXiv:1809.01447, 2018

202.

Mertz, Laurent, Georg Stadler, and Jonathan Wylie. “A Feynman–Kac Formula Approach for ComputingExpectations and Threshold Crossing Probabilities of NON-SMOOTH StochasticDynamical Systems.” Physica D: Nonlinear Phenomena 397 (2019): 25–38. 

203.

Merkl, Franz, Silke WW Rolles, and Pierre Tarres. "Convergence of vertex-reinforced jump processes to an extension of the supersymmetric hyperbolic nonlinear sigma model." Probability Theory and Related Fields 173, no. 3-4 (2019): 1349-1387.

204.

Thomas Mountford, Krishnamurthi Ravishankar, and Glauco Valle, A Construction of the Stable Web, ALEA, Lat. Am. J. Probab. Math. Stat. 16, 787–807 (2019).

205.

R. Huang, D. KiousV. Sidoravicius, and P. TarrèsExplicit Formula for the Density of Local Times of Markov Jump ProcessesElectron. Commun. Probab., 23 (2018), no. 90, 1-7.

206.

Bahadoran, Christophe, T. Mountford, K. Ravishankar, and E. Saada. "Quenched convergence and strong local equilibrium for asymmetric zero-range process with site disorder." Probability Theory and Related Fields 176, no. 1-2 (2020): 149-202.

207.

V. Sidoravicius and L. Tournier. The Ballistic Annihilation Threshold is 1/4arXiv preprint arXiv:1808.10731, 2018

208.

Véchambre, Grégoire. "General self-similarity properties for Markov processes and exponential functionals of Lévy processes." Journal of Theoretical Probability (2021): 1-62.

209.

Reza Gheissari, Charles M. NewmanDaniel L. SteinZero-Temperature Dynamics in the Dilute Curie-Weiss ModelJournal of Statistical Physics,  pp. 1-20 (2018)  

210.

Lauriere, Mathieu, and Laurent Mertz. "Penalization of Nonsmooth Dynamical Systems with Noise: Ergodicity and Asymptotic Formulae for Threshold Crossings Probabilities." SIAM Journal on Applied Dynamical Systems 18, no. 2 (2019): 853-880.

211.

S. Fournais, J.P. Miqueu and Xing-Bin PanConcentration behavior and lattice structure of surface superconductivityMathematical Physics, Analysis and Geometry, 22 (2) (2019), article no. 12, 33 pp

212.

Camia, Federico, Jianping, Jiang, and Charles M., Newman. "Exponential Decay for the Near-Critical Scaling Limit of the Planar Ising Model".Communications on Pure and Applied Mathematics 73, no.7 (2020): 1371-1405.

213.

J. Jiang and C.-L. Yao. Critical First-Passage Percolation Starting on the BoundaryStochastic Processes and their Applications, 129: 2049-2065, 2019.

214.

Newman, Charles M., and Wei Wu. "Lee–Yang property and Gaussian multiplicative chaos." Communications in Mathematical Physics 369, no. 1 (2019): 153-170.

215.

D. Abraham, C. M. Newman and S. Shlosman. A Continuum of Pure States in the Ising Model on a Half-Plane. Journal of Statistical Physics, 172: 611-626, 2018.

216.

L.-P. Arguin, C. M. Newman and D. L. SteinA Relation between Disorder Chaos and Incongruent Ground States in Spin GlassesComm. Math. Phys. 367, no. 3, 1019–1043, 2019.

217.

F. Camia, J. Jiang and C.M. Newman. A Note on Exponential Decay in the Random Field Ising ModelJournal of Statistical Physics, 173: 268-284, 2018

218.

Camia, Federico, Jianping Jiang, and Charles M. Newman."FK–Isingcoupling applied to near-critical planar models." Stochastic Processesand their Applications 130, no. 2 (2020): 560-583.

219.

Hailing Sang, Yongli Sang and Fangjun Xu: Kernel entropy estimation for linear processes. Journal of Time Series Analysis, 39, 563-591, 2018.

220.

Liu, Y., & Wang, W. (2018). The Small Deborah Number Limit of the Doi–Onsager Equation without HydrodynamicsJournal of Functional Analysis. doi:10.1016/j.jfa.2018.07.013 

221.

P. Grassberger, M.R. Hilario and V. Sidoravicius, Percolation in Media with Columnar Disorder, J. Stat. Phys. (2017) 168:731-745.

222.

Duminil-Copin, Hugo, Marcelo R. Hilário, Gady Kozma, and Vladas Sidoravicius. "Brochette percolation." Israel Journal of Mathematics 225, no. 1 (2018): 479-501.

223.

J. Jiang. Exploration Processes and SLE_6 (2017) Markov Processes and Related Fields, 23: 445-466.

224.

Kious, Daniel, and Vladas Sidoravicius. "Phase transition for the Once-reinforced random walk on Zd-like trees." The Annals of Probability 46, no. 4 (2018): 2121-2133.

225.

N.Berger, C. Hoffman, & V. Sidoravicius, Non-uniqueness for Specifications in l2+ε (2018), Ergodic Theory and Dynamical Systems, 38(4), 1342-1352. doi:10.1017/etds.2016.101

226.

T. Rolla, Leonardo & Sidoravicius, Vladas. (2017). Stability of the Greedy Algorithm on the Circle. Communications on Pure and Applied Mathematics. 70. 1961-1986. 10.1002/cpa.21712. 

227.

Cabezas, M., Rolla, L.T. & Sidoravicius, V.Recurrence and Density Decay for Diffusion-limited Annihilating Systems (2017), Probab. Theory Relat. Fields, Volume 170, pp 587-615

228.

Sabot, Christophe; Tarrès, Pierre; Zeng, Xiaolin. The Vertex Reinforced Jump Process and a Random Schrödinger Operator on Finite Graphs. Ann. Probab. 45 (2017), no. 6A, 3967--3986. doi:10.1214/16-AOP1155.

229.

Groisman, Pablo, Santiago Saglietti, and Nicolas Saintier. "Metastability for small random perturbations of a PDE with blow-up." Stochastic Processes and their Applications 128, no. 5 (2018): 1558-1589.

230.

Feau C., Laurière M., & Mertz, L.Asymptotic Formulae for the Risk of Failure Related to an Elasto-plastic Problem with NoiseAsymptotic Analysis, vol. 106, no. 1, pp. 47-60, 2018.

231.

J. Chen and Xing-Bin Pan, Quasilinear systems involving CurlProc. Royal Soc. Edinburgh, 148A (2018), 243–279.

232.

Sun, Jie, and Qiang Yao. On coherency and other properties of MAXVARVietnam Journal of Mathematics (2018): 1-8.

233.

B. Haas and R. StephensonBivariate Markov chains converging to Lamperti transform Markov Additive ProcessesStochastic Processes and their Applications, 128: 3558-3605, 2018.

234.

Xing-Bin Pan, Mathematical problems of boundary layer behavior of superconductivity and liquid crystals, Scientia Sinica Mathematics, 48 (1) (2018), Special issue dedicated to the 90th birthday of Prof. Guangchang Dong, 83-110.

235.

G. VéchambreExponential functionals of spectrally one-sided Lévy processes conditioned to stay positiveAnn. Inst. H. Poincaré Probab. Statist. 55 (2019), no. 2, 620--660.

236.

H. J. Gong, T. Huang, J. K. Li, Nouniqueness of Nematic Liquid Crystal Flows in Dimension Three. Journal of Differential Equations, 263(12), 8630-8648, 2017

237.

A. Kachmar, S. Fournais and Xing-Bin Pan, Existence of surface smectic states of liquid crystals, J. Functional Analysis, 274 (3) (2018), 900-958. 

238.

Huang, Tao, and Changyou Wang. "Boundary Bubbling Analysis of Approximate Harmonic Maps Under Either Weak or Strong Anchoring Conditions in Dimension 2." International Mathematics Research Notices 2018, no. 22 (2018): 7026-7066.

239.

Bahadoran, C., Mountford, T., Ravishankar, K., & Saada, E., Supercritical behavior of asymmetric zero-range process with sitewise disorder. Ann. Inst. H. Poincaré Probab. Statist., 53 (2), (2017), 766-801. Institut Henri Poincaré.

240.

Newman, C. M.Ravishankar, K. and Schertzer, E., Perturbations of Voter model in one-dimension, ‎Electron. J. Probab. Volume 22 (2017), paper no. 34, 42 pp.

241.

Aymone, M., & Sidoravicius, V.,  Partial sums of biased random multiplicative functions‎J. Number Theor172, (2017), 343-382.

242.

Ye, J., Gheissari, R., Machta, J., Newman, C. M., & Stein, D. L.Long-time predictability in disordered spin systems following a deep quenchPhys Rev E.95(4), (2017), 042101.

243.

Xu, F., Second-order limit laws for occupation times of fractional Brownian motionJ. Appl. Probab., 54(2), (2017), 444-461.

244.

Xing-Bin Pan, Directional curl spaces and applications to the Meissner states of anisotropic superconductorsJ. Math. Phys.58(1), (2017), 011508.

245.

Y. Almog, B. Helffer, Xingbin Pan, Mixed normal-superconducting states in the presence of strong  electric currents, Arch. Rational Mech. Anal., 223 (1), (2017), 419-462

246.

Deng, Fan, Zhen Lei, and Fanghua Lin. On the 2D Muskat Problem with Monotone Large Initial Data. Comm. Pure Appl. Math., 70(2017)1115–1145. 

247.

Xingbin Pan, Existence and regularity of solutions to quasilinear systems of Maxwell type and Maxwell-Stokes type, Calc. Var. Partial. Differ. Equ., 55 (6) (2016), article 143, pp. 1-43

248.

Huang, T.Regularity and uniqueness for a class of solutions to the hydrodynamic flow of nematic liquid crystalsAnal. Appl., 14 (04), (2016), 523-526. 

249.

Huang, T., Liu, L., Lou, Y., & Wang, C. (2016), Heat Flow of Extrinsic Biharmonic Maps from a four Dimensional Manifold with BoundaryJournal of Elliptic and Parabolic Equations, April 2016, Volume 2, Issue 1–2, pp 1–26

250.

Huang, T., Lin, F., Liu, C., & Wang, C., Finite time singularity of the nematic liquid crystal flow in dimension threeArch Rational Mech Anal (2016) September 2016, Volume 221, Issue 3, pp 1223–1254

Pages